
Lecture 11 on Oct. 21 2013

We already introduced the functions ez, log z and zα. Now we consider the mappings given by these functions
and their compositions.

Exponential mapping First of all, we consider ez. Given line x = x0, we know that the points on
this line can be parametrized by x0 + iy, where y is a variable. Therefore under the mapping of ez, these
points are mapped to ex0eiy. Clearly for any y, ex0eiy lies on the circle C whose center is 0 and radius is
ex0 . While y varies from −∞ to ∞, the imaging points circulate along the circle C infinitely many times.
Of course, ez is not 1-1 when restricted on the whole line x = x0. But when we restrict ez to a segment on
x = x0 whose length is smaller than 2π, ez is a 1-1 mapping. Now we consider the line y = y0. all points
on this line are parametrized by x + iy0. Therefore by ez, these points are mapped to exeiy0 . Clearly all
imaging points share same argument, y0. While x varies from −∞ to ∞, ex runs from 0 to ∞. Therefore ez

maps y = y0 to a ray with argument y0. Notice that the origin is not on the image. Moreover this mapping
is 1-1 in that ex is a one-one function. Now we give two lines y = y1 and y = y2. If |y2− y1| < 2π, then ez is
1-1 on the strip L whose boundaries are given by y = y1, y = y2. Moreover ez send y = y1 to the ray with
argument y1. It also sends y = y2 to the ray with argument y = y2. Furthermore, it sends all points on the
strip L to points with argument between y1 and y2.

log mapping Since log z is the inverse function of ez, we can transform regions between two rays to
a strip. Now we use one example to show applications of translation, dilation and log z.

Example 1: transform A = {π/4 < θ < 3π/4} onto the strip L = {1 < y < 2}.

Step 1. cut the negative x-axis from the complex plane and let arguments for the remaining points lie
on the interval [−π, π). Using this branch, we define a log function log z = log |z|+ iarg(z), where arg(z) lies
in [−π, π);

Step 2. Using the log function in Step 1, we can map A to the strip L1 = {π/4 < y < 3π/4}. Defin-
ing w1 = 2z/π, L1 is mapped to L2 = {1/2 < y < 3/2};

Step 3. Translating L2 by 1/2 along the positive direction of the y-axis, we are done. So the mapping
realizing A to L is (2 log z)/π + i/2.

power functions Choosing a branch for log z, we can write log z = log |z| + iarg(z). by definition of
power functions, we have

zα = eα(log |z|+iarg(z)) = |z|αeiαarg(z),

where we assume α is a real number. Therefore we have |zα| = |z|α, arg(zα) = αarg(z). The main applica-
tion of power functions is to change argument for points on a ray.

Example 2: Letting A be the region on C without negative x-axis and B be the right part of the imaginary
line, then z1/2 sends A to B. Here we choose the same branch for log z as Step 1 of Example 1. Clearly
by this branch, arg(z) lies in [−π, π), where z is on A. by definition of power functions, z1/2 has argument
arg(z)/2. Therefore arg(z1/2) lies on [−π/2, π/2), for all z in A.

Mapping for C \ [−1, 1] We now try to map C \ [−1, 1] to the interior of the unit disk.

Step 1: Letting w1 = (z + 1)/(z − 1), we can map [−1, 1] to the negative part of the x-axis;

Step 2: By the power function in Example 2, we have w2 = w
1/2
1 , which maps the complement set of

the negative part of the x-axis to the right part of the imaginary line;
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Step 3: Using w3 = (w2 − 1)/(w2 + 1), we can map the right part of the imaginary line to the interior
of the unit disk. Compose the above three steps, the mapping we need is

w =

(
z+1
z−1

)1/2

− 1(
z+1
z−1

)1/2

+ 1

. (0.1)

The inverse mapping of (0.1) Sovling z in (0.1) by w, one can easiliy show that

z =
1

2

(
w +

1

w

)
. (0.2)

Now we are going to study this mapping in details. Assuming w = ρeiθ and z = x+ iy, it holds

x =
1

2

(
ρ+ ρ−1

)
cos θ, y =

1

2

(
ρ− ρ−1

)
sin θ. (0.3)

Fixing ρ0 < 1 and letting θ be a variable running from [0, 2π), then w variable vary along some circle
C with radius ρ0 once. Here C is centered at the original point. Moreover by (0.3), one can eleminate the
variable θ and show that the image of C satisfies the equation

x2[
1
2

(
ρ0 + ρ−10

)]2 +
y2[

1
2

(
ρ0 − ρ−10

)]2 = 1.

Clearly it is an ellipse with foci locating at −1 and 1. Now we begin to decrease ρ from ρ0 to 0. By this
means, we want to find the image of the disk enclosed by C under the mapping (0.2). Noticing that when
ρ < 1, the function ρ + ρ−1 is strictly decreasing. While ρ ↓ 0, we have ρ + ρ−1 ↑ ∞. Therefore the major
axis of the ellipse is expanding while ρ is decreasing. Samely ρ−1 − ρ is also decreasing with respect to ρ.
This shows that the minor axis is also expanding while ρ decrease to 0. So we know that while we decrease
ρ from ρ0 to 0, it helps us sweep out the whole exterior part of the ellipse. up to now, we show that (0.2)
maps the disk enclosed by C to {the exterior part of the ellipse} ∪ {∞}.

Now we fix θ0 and letting ρ be a variable. Clearly w variable now vary along a ray L with argument
θ0. Still using (0.3) to eleminate variable ρ, we know that the image of the ray L under the mapping (0.2)
should satisfy

x2

cos2 θ0
− y2

sin2 θ0
= 1. (0.4)

It is a hyperbola with two branches. Moreover the associated foci are also located at −1 and 1. Some remarks
have to be put here. If we assume θ0 lies in (0, π/2), then by (0.3) x variable is always positive. Therefore
the ray L is mapped to the right branch of the hyperbola. Secondly since ρ− ρ−1 is an increasing function,
y coordinate for imaging point is increasing while we increase ρ from −∞ to +∞. Therefore the mapping
(0.2) is one-one mapping from the ray L to the right branch of (0.4). Now we increase θ variable from θ0
to π − θ0. On (θ0, π/2), cos function is decreasing. Therefore the imaging hyperbola is moving left-ward
while θ is increasing. When θ = π/2, the image is the whole imaginary line. On the interval (π/2, π − θ0),
cos function is still decreasing but negative. Now the corresponding ray with argument θ is mapped to the
left branch of the corresponding hyperbola. Therefore the above arguments show that (0.2) maps the region
{θ0 < θ < π− θ0} to the region enclosed by the two branches of the hyperbola (0.4). the mapping is one-one
and onto.
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